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Abstract

We introduce a sequent based method for reasoning with deontic assumptions using
specificity and superiority for conflict resolution. Starting from a base logic, we apply
strengthening of the antecedent to the assumptions wherever possible unless this
would yield an inconsistency. The method applies to logics with an arbitrary finite
number of dyadic deontic operators of type MP or MD (in the sense of Chellas) with
inclusions among the operators. We illustrate the method using various examples.
An implementation is also available.

1 Introduction

Legal, ethical, religious and behavioral norms often have a conditional form.
A common way for formalising such conditional norms is via dyadic deontic
operators, historically introduced to represent Contrary-To-Duty (CTD) obli-
gations, i.e. obligations which are applicable only if another norm is violated.
Although the dyadic representation can solve notorious CTD paradoxes, it also
introduces new difficulties; in particular, how to reason on the conditions (i.e.,
the second argument of dyadic operators) without reintroducing possible de-
ontic conflicts. Roughly speaking, a deontic conflict occurs when two or more
obligations/prohibitions cannot be mutually realized.

Various general conflict resolution principles are considered in the litera-
ture. Here we focus on two major ones, widely used in law and AI: specificity
and superiority. The former, known in law as lex specialis derogat legi generali,
states that specific obligations/prohibitions override more general ones, while
the latter refers to prioritized obligations/prohibitions coming from normative
authorities of different strength (lex superior) or, e.g., in a different chronolog-
ical order (lex posterior).

In this article we extend the most basic dyadic deontic logics with a general
and purely syntactic mechanism for reasoning on the conditions of deontic

? This work was partly supported by WWTF Project MA16-28 and by BRISE-Vienna
(UIA04-081), a European Union Urban Innovative Actions project.
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assumptions, resolving conflicts using specificity on conditions and superiority
between assumptions. The mechanism generalizes and extends to superiority
the calculus introduced in [8] for a particular logic (see also Sec. 6.1).

Our starting point are logics based on finite combinations of operators
♥, which are dyadic versions of non-normal (upwards or downwards) mono-
tone modal logic M, extended with the (dyadic versions of) the axioms
P ¬(♥(⊥/B) ∧ ♥(>/B)) or D ¬(♥(A/B) ∧ ♥(¬A/B)). For an upwards
monotone, i.e., obligation type, operator this yields, e.g., the dyadic version
of minimal deontic logic MP from [6]. Although well behaved, these log-
ics are not useful for reasoning on the conditions of deontic formulae. E.g,
for a downwards monotone, i.e., prohibition type, operator F we can derive
F(park/>) → F(park ∧ ride/>), but not F(park/>) → F(park/¬permit). The
naive solution of adding unrestricted strengthening of the antecedent, i.e., an
unrestricted downwards monotonicity rule for the second argument, quickly
leads to conflicting norms, and in presence of axiom D to a contradiction. To
avoid this, we consider sequent rules incorporating a limited form of strength-
ening of the antecedent / downwards monotonicity “up to conflicting assump-
tions”. Starting from prima-facie deontic assumptions and propositional back-
ground facts, our sequent rules intuitively permit to derive every formula re-
sulting from strengthening the antecedent, unless this would lead to an incon-
sistency over the base logic. Deontic conflicts are resolved using specificity and
superiority. The resulting system satisfies the disjunctive response of [10], see
Ex. 4.3, and can be used to model permissions as exceptions as well as some
forms of CTD reasoning, see Ex. 4.2, Sect. 6.2 and Rem. 6.3.

As in sequent calculi for non-monotonic logics [3,25], our rules use state-
ments expressing that certain sequents are not derivable. In contrast with other
calculi for non-monotonicity in normative reasoning like [13,29], our calculi en-
joy cut-elimination, which yields decidability and complexity results. A further
corollary is that we can define the set of consequences of deontic assumptions
iteratively, thus avoiding fixed-point constructions like those in [17].

The generality of our system is demonstrated with case studies including the
logic simulating the reasoning of the Mı̄mām. sā school from [7,8], a modelling
of permissions as exceptions, and the operators of sanction and violation.

The system is implemented in the Prolog system deonticProver2.0 (http:
//subsell.logic.at/bprover/deonticProver/version2.0/). For any finite
set of dyadic operators of type M, MP, or MD, with (possible) inclusions, the
system constructs sequent rules to deal with specificity and superiority, and
uses them to answer the question: Given an input of deontic assumptions and
background facts, which conditional norms are in force, i.e., which formulae are
derivable? In addition to a web interface for the prover, the website contains
a number of examples and illustrates the behaviour of the system with respect
to some standard deontic puzzles and paradoxa.

http://subsell.logic.at/bprover/deonticProver/version2.0/
http://subsell.logic.at/bprover/deonticProver/version2.0/
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2 Restricted strengthening of the antecedent

Before delving into the technicalities, we briefly illustrate the intuitions behind
our approach. As mentioned above, given deontic assumptions such as

(i) You ought not to eat with your fingers,

(ii) You ought to put your napkin on your lap,

(iii) If you are served asparagus, you ought to eat it with your fingers,

from the asparagus example (e.g. [31,16]) we would like to be able to apply
strengthening of the antecedent to (ii) to derive “If you are served asparagus,
you ought to put your napkin on your lap”. However, as is well-known, adopting
an unrestricted form of strengthening of the antecedent would also yield “If
you are served asparagus, you ought not to eat with your fingers”. Together
with (iii) this yields a pair of conflicting obligations, and hence an inconsistency
in any logic satisfying the D-axiom for obligations.

Our proposal for dealing with this situation is based on two main aspects:
First, it is parametric in the base logic, and second it follows what could be
called a generous approach towards applying strengthening of the antecedent.
The latter means that given a set of deontic assumptions we apply strength-
ening of the antecedent whenever this is possible without resulting in inconsis-
tencies over the base logic. In particular, this aims at keeping in force as many
prima-facie norms as possible. Conflicts between norms are resolved follow-
ing the specificity principle, i.e., assuming that conditional norms with more
specific conditions like (iii) above overrule those with more general conditions
like (i), and an (optional) superiority relation on the deontic assumptions. Note
that inconsistencies are always evaluated with respect to the base logic. Hence
for logics containing no principles ruling out conflicting or impossible norms
there are no conflicts to avoid, and we obtain unrestricted strengthening of the
antecedent/downwards monotonicity in the second argument.

In the asparagus example above, given a base logic ruling out conflicting
obligations, we thus should derive “If you are served asparagus, you ought to
put your napkin on your lap” as well as, e.g., “If you are served asparagus
at your grandparents’, you ought to eat it with your fingers”: For the former,
there are no assumptions which could yield a conflict; for the latter, the assump-
tion (i) could be used to derive a conflicting obligation, but this assumption is
overruled by the more specific assumption (iii).

The situation becomes more interesting if we consider the following addi-
tional deontic assumption: 1

(iv) If you are at your grandparents’, you ought not to eat with your fingers.

Now neither of the two assumptions (iii) and (iv) is more specific than the
other. Hence, in order to keep the derived obligations consistent over the base
logic we cannot derive the obligation “If you are served asparagus at your

1 We are grateful to the anonymous reviewer for bringing this and the following examples
to our attention.
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grandparents’, you ought to eat it with your fingers” anymore, because then
by symmetry we should also be able to derive the conflicting obligation “If
you are served asparagus at your grandparents’, you ought not to eat it with
your fingers” from assumption (iv). Note that this shows the difference to
credulous approaches, where both the above statements would be derivable.
The situation changes again, however, if we add the permission (see Sect. 6.2):

(v) If you are served asparagus at your grandparents’, you may eat it with
your fingers.

Assuming that the base logic contains the principle that there are no conflict-
ing pairs of obligations and permissions, this assumption would prevent the
derivation of the obligation “If you are served asparagus at your grandparents’,
you ought not to eat it with your fingers” from assumption (iv), since it is
more specific. But then we cannot derive any obligation which would conflict
with “If you are served asparagus at your grandparents’, you ought to eat it
with your fingers”. Hence, following the generous approach towards applying
strengthening of the antecedent, we don’t have any reason to refrain from de-
riving this obligation from assumption (iii). While it has been argued, e.g.,
in [29] that it might be undesired if more specific permissions reinstate less
specific obligations, this is in line with the idea of preventing the derivation of
only those obligations which would result in inconsistencies over the base logic.

The generous approach of deriving every obligation which would not result
in an inconsistency over the base logic further motivates the idea that the
notion of a conflicting assumption is evaluated with respect to the obligation
we want to derive, and not the assumption we want to derive it from. As an
example, consider the additional assumption:

(vi) You ought not to eat with your fingers and not to pick your nose.

While the obligation “If you are served asparagus, you ought not to eat it with
your fingers and not to pick your nose” is in conflict with the more specific
assumption (iii) and hence should not be derivable, the obligation “If you are
served asparagus, you ought not to pick your nose” is not. Thus, we don’t
refrain from deriving the latter, even though the content of the assumption we
derived it from is inconsistent with the content of the more specific applicable
assumption (iii).

This focus on what we want to derive instead of the assumptions we derive
it from has the additional benefit that we do not need to worry about chains
of more and more specific assumptions, each in conflict with the previous one:
Given that the set of deontic assumptions is finite, such a chain will contain
a most specific applicable assumption. To see whether we should refrain from
deriving an obligation which would follow from one of the more general ones,
we thus only need to check the most specific assumption which is in conflict
with what we want to derive. If this one is overruled by an even more specific
assumption, then we can use the latter to derive the obligation in question;
otherwise we refrain from doing so.

We would like to stress again that the approach is parametric in the base
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logic. Hence the resulting systems inherit some of the limitations imposed by
the latter, both in terms of what is removed as inconsistent and of what can be
derived from the assumptions. In this work we consider only relatively weak
base logics. In particular, they neither permit to aggregate obligations, nor
rule out conflicts between more than two obligations, where each pair of these
is nonconflicting. We are, however, confident that the general method can be
extended to stronger base logics as well (see Sec. 7). Note also that since we
only aim to consistently close a set of conditional deontic assumptions under
strengthening of the antecedent with respect to a base logic, the derivable
formulae are still conditional statements, and hence we do not incorporate
factual detachment principles.

3 The base system

Formally, the basic logical systems we consider are propositional deontic log-
ics. Our logics extend the language of classical propositional logic consisting of
variables (p, q, . . . ), falsum (⊥) and implication (→), with dyadic deontic op-
erators ♥(./.) where the first argument represents the content of a conditional
norm, while the second argument represents its condition. We distinguish two
kinds of operators, depending on what it takes to comply with the norm:

• An operator ♥ is of obligation-type if the norm ♥(A/B) is complied with
whenever A is true;

• An operator ♥ is of prohibition-type if the norm ♥(A/B) is complied with
whenever A is false.

Note that this makes our operators upwards monotone in the first argument for
obligation type operators, and downwards monotone for prohibition type ones.
To capture relations between operators and their properties, given a set Op of
deontic operators with associated types, we assume a reflexive and transitive
inclusion relation →, a symmetric conflict relation  , and a unary nontriviality
predicate nt with the following intended meaning:

• If ♥ → ♠ for two operators ♥,♠ ∈ Op of the same type, then complying
with ♥(A/B) implies complying with ♠(A/B).

• If ♥ ♠ for two operators of the same type ♥,♠ ∈ Op, then complying
with one of ♥(A/B),♠(¬A/B) entails violating the other.

• If nt(♥) for an operator ♥ ∈ Op, then ♥ is non-trivial, in that it is logically
possible to comply with it.

For operators ♥,♠ of different type we flip the polarity of A in one of the
assumptions, i.e., we replace ♠(A/B) with ♠(¬A/B) and vice versa. We as-
sume that the relations  and nt are closed under preimages of the implication
relation, i.e., if ♥ ♠ and ♦ → ♥, then also ♦ ♠. In the following, an operator
characterisation is a tuple O = (Op,→, , nt) consisting of a set Op of operators
with types together with inclusion, conflict, and non-triviality relations.

The base logic we will consider then contains the Hilbert-style rules and
axioms of propositional classical logic together with the rules and axioms in
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{
A→ C

♥(A/B)→ ♥(C/B)
: ♥ obl type

} {
C → A

♥(A/B)→ ♥(C/B)
: ♥ proh type

}
{♥(A/B)→ ♠(A/B) : ♥ → ♠, same type }
∪ {♥(A/B)→ ♠(¬A/B) : ♥ → ♠, different type }
∪ {¬(♥(A/B) ∧ ♠(¬A/B)) : ♥ ♠, same type }
∪ {¬(♥(A/B) ∧ ♠(A/B)) : ♥ ♠, different type }
∪ {¬(♥(⊥/B) ∧ ♥(>/B)) : nt(♥)}

Fig. 1. The deontic axioms and rules for O = (Op,→, , nt).

Fig. 1. Note that due to upwards and downwards monotonicity respectively,
for operators ♥ with nt(♥) the axiom ¬(♥(⊥/B) ∧ ♥(>/B)) is equivalent to
¬♥(⊥/B) for ♥ of obligation type and to ¬♥(>/B) for ♥ of prohibition type.

Example 3.1 (i) Setting Op = {O} with O of obligation type and nt(O)
yields the dyadic version of minimal deontic logic MP from [6].

(ii) Replacing nt(O) with O O in (i) yields the dyadic version of monotone
modal logic M extended with the D axiom ¬(O(A/B) ∧ O(¬A/B)).

(iii) Setting Op = {O,F} with O of obligation type, F of prohibition type,
and O F yields a logic with upwards monotone obligations O, down-
wards monotone prohibitions F , and no conflicts between obligations and
prohibitions, i.e., the axiom ¬(O(A/B) ∧ F(A/B)). Note that this does
not rule out conflicts between obligations or between prohibitions. This
could be added by stipulating O O and F F , respectively.

(iv) Let Op = {must, ought, should} with all operators of obligation type.
Setting must → ought,must → should, ought → should with must must
and nt(ought) illustrates the possibility of using different operators for
analysing different strengths of obligations. The intuition is that must be-
haves like an obligation, while the weaker ought behaves more like a rec-
ommendation, hence satisfies only the P axiom instead of D. See, e.g., [1].

To facilitate automated reasoning and prove useful meta-logical properties,
we switch from Hilbert-style calculi to sequent calculi. As usual, a sequent is a
tuple Γ⇒ ∆ of multisets of formulae, with formula interpretation

∧
Γ→

∨
∆,

see, e.g., [30]. To write the rules with a coincise notation we introduce the
following two abbreviations:

Impl♥,♠(A,B) :=


A⇒ B ♥,♠ obligation type
A,B ⇒ ♥ obligation type ,♠ prohibition type
B ⇒ A ♥,♠ prohibition type
⇒ A,B ♥ prohibition type ,♠ obligation type
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{
Impl♥,♠(A,C) B ⇒ D D ⇒ B

Γ,♥(A/B)⇒ ♠(C/D),∆
Mon♥,♠ : ♥,♠ ∈ Op, ♥ → ♠

}
{

Confl♥,♠(A,C) B ⇒ D D ⇒ B

Γ,♥(A/B),♠(C/D)⇒ ∆
D♥,♠ : ♥,♠ ∈ Op, ♥ ♠

}
{

Confl♥,♥(A,A)

Γ,♥(A/B)⇒ ∆
P♥ : ♥ ∈ Op, ♥ ♥ or nt(♥)

}

Γ, p⇒ p,∆
init

Γ,⊥ ⇒ ∆
⊥L

Γ, B ⇒ ∆ Γ⇒ A,∆

Γ, A→ B ⇒ ∆
→L

Γ, A⇒ B,∆

Γ⇒ A→ B,∆
→R

Fig. 2. The base calculus for a given operator characterisation O = (Op,→, , nt)

Confl♥,♠(A,B) :=


A,B ⇒ ♥,♠ obligation type
A⇒ B ♥ obligation type ,♠ prohibition type
⇒ A,B ♥,♠ prohibition type
B ⇒ A ♥ prohibition type ,♠ obligation type

The intuition is that, e.g., for two operators ♥,♠ of obligation type, complying
with ♥(A/C) means that A is true, whereas violating ♠(B/C) means that B
is false. Hence complying with ♥(A/C) implies violating ♠(B/C) if A implies
¬B. This is captured in Confl♥,♠(A,B), i.e., the sequent A,B ⇒ . Using these
abbreviations, converting the Hilbert-style axioms into sequent rules using the
general method from [19] then gives the deontic rules Mon♥,♠,D♥,♠,P♥ of the
base calculus in Fig. 2. Note that since the relation → is reflexive, we have for
every operator ♥ either the upwards or downwards monotonicity rule:

A⇒ C B ⇒ D D ⇒ B
Γ,♥(A/B)⇒ ♥(C/D),∆

Mon ↑ C ⇒ A B ⇒ D D ⇒ B
Γ,♥(A/B)⇒ ♥(C/D),∆

Mon ↓

The resulting calculi are equivalent and admit cut-elimination, see [19].

4 Reasoning from assumptions

To reason on the conditions of norms in the above systems we will introduce
special sequent rules. These allow us to reason from deontic assumptions, i.e.,
a finite set L of deontic formulae ♥(A/B) with ♥ ∈ Op. To ensure well-
definedness and termination of proof search we require that these assumptions
are non-nested, i.e., that A,B are purely propositional. The main idea is to
make the second argument downwards monotone “up to conflicting assump-
tions”. Since a formula A with A → B can be seen as “more specific” than
B, this captures the specificity principle, that more specific conflicting deontic
assumptions overrule less specific ones. Before considering the rules in detail
we mention two more features of the system.

To be able to reason with non-deontic propositions as well, we also consider
propositional facts as assumptions. W.l.o.g. we assume that these are given
in the form of a finite set F of atomic sequents, i.e., sequents of the form
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p1, . . . , pn ⇒ q1, . . . , qm with the pi, qj propositional variables. Since every
purely propositional formula is equivalent to a formula in conjunctive normal
form, this is equivalent to permitting arbitrary purely propositional formulae
as assumptions. The sequent rules for these assumptions then are given by{

Σ,Γ⇒ ∆,Π
F

: Γ⇒ ∆ ∈ F

}
.

Often obligations and prohibitions further come with a priority order. To
capture this, we follow the standard approach and say that a superiority relation
is a binary relation � on the set of deontic assumptions. The intuition is that
for two deontic assumptions A,B with A � B, the former is superior, or has
higher authority, than the latter, and hence A cannot be overruled by B, even
if the latter is more specific. For technical reasons we impose that for every two
assumptions A,B we have A � B or B � A. Note that this rules out cycles of
length one or two, but due to lack of transitivity not those of greater length.

Sequent calculus rules: We then extend the base calculus with sequent
rules for capturing the specificity principle in presence of prioritized deontic
assumptions. The idea is that we can use downwards monotonicity in the sec-
ond argument to derive, e.g., ♥(A/B) from a deontic assumption ♥(A/B ∨C)
unless the latter is overruled by a more specific conflicting deontic assumption
or in conflict with the P axiom. In addition, we also need to rule out that there
is another conflicting assumption which is not overruled by a more specific one.
The crucial feature needed for this is the addition of underivability statements
in the premisses of the rules. These are used for stating, e.g., that we cannot
derive a conflict between two formulae. The general conditions for deriving an
obligation or a prohibition from a deontic assumption then are as follows:

Given a list L of deontic assumptions, we can derive ♥(A/B) from the
assumption ♠(C/D) ∈ L with ♠ → ♥ if:

• the assumption ♠(C/D) is applicable, i.e., if we can derive that the con-
dition B implies the condition D; AND

• complying with the assumption ♠(C/D) implies complying with ♥(A/B),
i.e., if we can derive Impl♠,♥(C,A); AND

• there is no conflict with the non-triviality axiom P for ♥, i.e., we cannot
derive Confl♥,♥(A,A) provided that nt(♥); AND

• the assumption ♠(C/D) is neither overruled by a more specific one, nor
in conflict with another assumption which is not overruled. I.e., for every
assumption ♣(E/F ) ∈ L with ♣ ♠ and ♠(C/D) � ♣(E/F ) we have:
· the assumption ♣(E/F ) is not applicable, i.e., we cannot derive that

the condition B implies F ; OR
· the assumption ♣(E/F ) is not in conflict with what we want to derive,

i.e., we cannot derive Confl♣,♥(E,A); OR
· the assumption ♣(E/F ) is not more specific than ♠(C/D) and it is

not overruled by another more specific one, i.e.:
∗ the assumption ♣(E/F ) is not more specific than ♠(C/D), i.e., we
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B ⇒ D
Impl♠,♥(C,A)
{0 Confl♣,♣(A,A) : nt(♣),♣ = ♥}


0 B ⇒ F
0 Confl♣,♥(E,A)

0 F ⇒ D,
B ⇒ Y,
Y ⇒ F,
Impl♦,♥(X,A)

 :
♦(X/Y ) ∈ L,
♦ ♣

♣(E/F ) � ♦(X/Y )



 :
♣(E/F ) ∈ L,
♣ ♠

♠(C/D) � ♣(E/F )


Γ⇒ ♥(A/B),∆

♥♠(C/D)
R

B ⇒ D
Confl♠,♥(C,A)


0 B ⇒ F
0 Impl♣,♥(E,A)

0 F ⇒ D,
B ⇒ Y,
Y ⇒ F,
Confl♦,♥(X,A)

 :
♦(X/Y ) ∈ L,
♦ ♣

♣(E/F ) � ♦(X/Y )



 :
♣(E/F ) ∈ L,
♣ ♠

♠(C/D) � ♣(E/F )


Γ,♥(A/B)⇒ ∆

♥♠(C/D)
L

Fig. 3. The deontic assumption rules.

cannot derive that the condition F implies D; AND
∗ there is another more specific applicable assumption ♦(X/Y ), com-
plying with which implies complying with ♥(A/B), i.e., for one of
♦(X/Y ) ∈ L with ♦ ♣ and ♣(E/F ) � ♦(X/Y ) we have:
- the assumption ♦(X/Y ) applies, i.e., we can derive that the con-
dition B implies Y ; AND

- the condition Y is more specific than the condition of ♣(E/F ), i.e.,
we can derive that the condition Y implies F ; AND

- complying with the assumption ♦(X/Y ) implies complying with
♥(A/B), i.e., we can derive Impl♦,♥(X,A).

In order to formalise this as sequent rules we use the following abbreviation.
Let S = {S1, . . . ,Sn} be a finite set of sets of premisses. Then we write

P ∪ [S]

C
for the set of rules

{P ∪ S1
C

, . . . ,
P ∪ Sn
C

}
.

The general assumption right rules ♥♠(C/D)
R are given in Fig. 3, where we write

0 Γ⇒ ∆ for an underivability statement. Note that in this notation sets essen-
tially correspond to conjunctive conditions on the premisses and capture the
“AND” and “for all” above, while the choice notation [.] essentially corresponds
to disjunctive conditions and captures the “OR” and “there is”. In particular,
the notation [S♦(X/Y ) : ♦(X/Y ) ∈ L] corresponds to the big disjunction over
the ♦(X/Y ) ∈ L of the S♦(X/Y ) and hence the existential quantification over
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the finite set L. To abbreviate the notation we equivalently incorporated the
premiss 0 F ⇒ D into the following choice block.

Remark 4.1 The D axiom is equivalent to ♥(A/B)→ ¬♥(¬A/B), and hence
from an assumption ♥(A/B) we should be able to derive ¬♥(¬A/B). The
assumption right rules allow us to do that only if we use the cut rule, see
Sec. 5. As the presence of this rule destroys useful properties of the calculus,

we introduce in the system the corresponding left rules ♥♠(C/D)
L in Fig. 3,

obtained by absorbing cuts between the assumption right rules ♥♠(C/D)
R and

the D-rules D♥,♣. As usual, introducing a formula ♥(A/B) on the left hand
side of the sequent, amounts to deriving ¬♥(A/B).

Note that the nonderivability premiss for removing conflicts with the P
axiom is no longer present – if nt(♥) and Confl♥,♥(A,A) is derivable, then we
immediately obtain the conclusion using the rule P♥. The full calculus then
contains the base rules of Fig. 2 together with the rules:{
♥♠(C/D)

R : ♠ → ♥,♠(C/D) ∈ L
}
∪
{
♥♠(C/D)

L : ♠ ♥,♠(C/D) ∈ L
}

.

4.1 Examples

The examples below can be checked at http://subsell.logic.at/bprover/

deonticProver/version2.0/, where also more examples are available.

Example 4.2 Continuing Ex. 3.1.(ii), consider O of obligation type with
O O and the deontic assumptions corresponding to the asparagus exam-
ple [31,16] (see also Sec. 2) given by L = {O(¬fingers/>), O(fingers/asparagus),
O(¬asparagus/>)}. Since asparagus → > and there is no conflicting as-
sumption, we can derive O(¬asparagus/asparagus), hence the contrary-to-
duty obligation O(fingers/asparagus) does not override the primary obliga-
tion O(¬asparagus/>). However, the more specific obligation (or excep-
tion) O(fingers/asparagus) overrides O(¬fingers/>). Moreover, exemplifying
Rem. 4.1, since we can derive O(fingers/asparagus), due to O O and the as-

sumption left rule OO(fingers/asparagus)
L we also derive ¬O(¬fingers/asparagus).

Example 4.3 Consider the classical drowning twins example, for the
same operator O as in the previous example, deontic assumptions
L = {O(save twin 1/>), O(save twin 2/>)} and the propositional fact
save twin 1, save twin 2 ⇒ ⊥ which stipulates that saving both twins is im-
possible. Neither of the two assumptions is derivable because it is in conflict
with the other one. However, the formula save twin 1 ∨ save twin 2 is noncon-
tradictory, hence we can derive O(save twin 1 ∨ save twin 2/>). This shows
that norms which are nonderivable can still serve to derive other norms, and
in particular that our system satisfies the disjunctive response of [10] for two
conflicting deontic assumptions. Adding superiority between the two assump-
tions, e.g., stipulating O(save twin 1/>) � O(save twin 2/>), would break the
tie and make the O(save twin 1/>) derivable.

http://subsell.logic.at/bprover/deonticProver/version2.0/
http://subsell.logic.at/bprover/deonticProver/version2.0/
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Γ, A,A⇒ ∆

Γ, A⇒ ∆
ConL

Γ⇒ A,A,∆

Γ⇒ A,∆
ConR

Γ⇒ ∆
Σ,Γ⇒ ∆,Π

W

Fig. 4. The structural rules.

Example 4.4 Continuing Ex. 3.1.(iv), with the operator characterisation
given there for the operators must, ought, should and the assumptions
{must(¬murder/>), ought(help friend/>)} as well as the unfortunate fac-
tual assumption help friend ⇒ murder we can derive must(¬murder/>),
ought(¬murder/>), should(¬murder/>). We also derive ought(murder/>) us-

ing ought
ought(help friend/>)
R , but since ought behaves like a recommendation and

hence doesn’t satisfy the D axiom, these two are not in conflict.

Example 4.5 Consider the order puzzle from, e.g., [14], with the opera-
tor O as in Ex. 4.2 and deontic assumptions given by the ordered list
O(¬open window/heating) � O(open window/>) � O(heating/>). For the
situation where the window is open and the heating is off we can derive
O(open window/open window ∧ ¬heating) as well as O(heating/open window ∧
¬heating), but not O(¬open window/open window ∧ ¬heating), since the as-
sumption O(¬open window/heating) does not apply. This illustrates that deon-
tic detachment/transitivity does not hold (since these principles are not present
in the base logic). In particular, there also is no aggregation of priorities along
chains of obligations which could make the assumption O(open window/>)
overrule the inferior O(heating/>). A similar effect could be achieved, how-
ever, by adding the assumption O(¬heating/open window), since by specificity
this would block the derivation of O(heating/open window ∧ ¬heating).

5 Cut-elimination and Consequences

We now consider the formal details of the introduced calculi. Due to the
underivability statements in the rules we proceed in two stages.

Definition 5.1 We call deontic assumptions a finite set L of non-nested de-
ontic formulae. We further call propositional facts a finite set F of atomic
sequents closed under applications of the cut rule below and the contraction
rules ConL,ConR of Fig. 4.

Γ⇒ ∆, A A,Σ⇒ Π

Γ,Σ⇒ ∆,Π
cut

A normative basis is a triple N = (O,L,�,F) consisting of an operator charac-
terisation O, deontic assumptions L with a superiority relation �, and proposi-
tional facts F. Given a normative basis, the rules of the system GN are those of
the base calculus for O from Fig. 2, the factual assumption rules F, the deontic
assumption rules of Fig. 3 and the structural rules of Fig. 4. The system GNcut
extends GN with the rule cut.

Definition 5.2 Given a normative basis N = (Op,L,�,F), a proto-derivation
in GN (or GNcut) is a finite labelled tree, with every internal node labelled
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with a sequent which is obtained from the labels of the node’s children using a
rule of GN (or GN plus cut, respectively), and every leaf node labelled with the
conclusion of a zero-premiss rule in GN or an underivability statement 0 Γ⇒ ∆.
The conclusion of a proto-derivation is the label of its root. A proto-derivation
of rank n is a proto-derivation where the nesting depth of operators from Op
in every formula occurring in it is at most n. A proto-derivation (of rank n) is
a derivation (of rank n), if none of the underivability statements occurring in
it have a derivation in GNcut (of rank n− 1). We write `GN

Γ⇒ ∆ if there is
a derivation of Γ⇒ ∆ and `nGN

Γ⇒ ∆ if there is a derivation of rank n.

Note that underivability statements always range over GNcut, i.e., the sys-
tem with the cut rule. Since the definition of a derivation refers to itself, we
need to show that it is well-defined. This follows from the observation that
the modal nesting depth of the underivability statements occurring in the pre-
misses of the assumption rules is strictly smaller than that of the conclusion,
together with the main result of this section, stating that cut is admissible.

Before proving this theorem (in its stronger version, namely that the cut
rule is eliminable) we show some preliminary results:

Proposition 5.3 The following rules are derivable in GNcut:

Impl♥,♠(A,B) Impl♠,♣(B,C)

Impl♥,♣(A,C)
cut

Impl♥,♠(A,B) Confl♠,♣(B,C)

Confl♥,♣(A,C)
cut

Proof. By applying cut and spelling out the cases for Impl and Confl. 2

Lemma 5.4 The generalised initial sequents Γ, A⇒ A,∆ are derivable.

Proof. By induction on the depth of the derivation, using Mon♥,♥. 2

The proof of the cut-elimination theorem generalizes the one in [8], which
was tailored to the particular rules of the modalities for the dyadic version of
the non-normal deontic logic MD [6] (see Section 6.1).

Theorem 5.5 (Cut elimination) If `GNcut Γ⇒ ∆, then `GN
Γ⇒ ∆.

Proof. By eliminating topmost applications of multicut, i.e., the rule

Γ⇒ ∆, An Am,Σ⇒ Π

Γ,Σ⇒ ∆,Π
mcut

using a double induction on the complexity of the cut formula A and the sum of
the depths of the two premisses of the application of multicut. The interesting
case is for A being a deontic formula, the propositional cases are standard.

The case of the last applied rules being modal is straightforward, e.g., for

Impl♥,♠(A,C) B ⇒ D D ⇒ B

Γ,♥(A/B)⇒ ♠(C/D),∆
Mon♥,♠

Confl♠,♣(C,E) D ⇒ F F ⇒ D

Σ,♠(C/D),♣(E/F )⇒ Π
D♠,♣

we replace the cut on ♠(C/D) by cuts on the premisses and an application of
D♥,♣ using Prop.5.3 and the fact that since ♥ → ♠ and ♠ ♣, also ♥ ♣. The
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case of both rules being Mon is similar. A multicut between the conclusions of

Impl♥,♠(A,C) B ⇒ D D ⇒ B

Γ,♥(A/B)⇒ ♠(C/D),∆
Mon♥,♠

Confl♠,♠(C,C) D ⇒ D D ⇒ D

Σ,♠(C/D),♠(C/D)⇒ Π
D♠,♠

is replaced by two cuts of smaller complexity, obtaining first Confl♥,♠(A,C)
and then Confl♥,♥(A,A) using Prop.5.3. Then we apply D♥,♥. The case of a
cut between the conclusions of the rules Mon♥,♠ and P♠ is analogous.

The case involving the right assumption rule and the monotonicity rule is
as follows (strictly speaking, the first denotes a set of rules). Suppose we have

B ⇒ D
Impl♠,♥(C,A)
{0 Confl♣,♣(A,A) : nt(♣),♣ = ♥}


0 B ⇒ F
0 Confl♣,♥(E,A)

∪



0 F ⇒ D
B ⇒ Y,
Y ⇒ F,
Impl♦,♥(X,A)

 :
♦(X/Y ) ∈ L,
♦ ♣

♣(E/F ) � ♦(X/Y )



 :
♣(E/F ) ∈ L,
♣ ♠

♠(C/D) � ♣(E/F )


Γ⇒ ♥(A/B),∆

♥♠(C/D)
R

(1)
and

Impl♥,♥′(A,G) B ⇒ H H ⇒ B

Σ,♥(A/B)⇒ ♥′(G/H),Π
Mon♥,♥′

By induction hypothesis on the cut complexity we obtain the premisses of

H ⇒ D
Impl♠,♥′(C,G)
{0 Confl♣,♣(G,G) : nt(♣),♣ = ♥′}


0 H ⇒ F
0 Confl♣,♥′(E,G)

∪



0 F ⇒ D
H ⇒ Y,
Y ⇒ F,
Impl♦,♥′(X,G)

 :
♦(X/Y ) ∈ L,
♦ ♣

♣(E/F ) � ♦(X/Y )



 :
♣(E/F ) ∈ L,
♣ ♠

♠(C/D) � ♣(E/F )


Γ,Σ,⇒ ♥′(G/H),∆,Π

♥′♠(C/D)
R

This uses Prop. 5.3 for obtaining Impl♠,♥′(C,G) and Impl♦,♥′(X,G), as well
as obtaining 0 Confl♣,♥′(E,G) from 0 Confl♣,♥(E,A) and Impl♥,♥′(A,G).
Finally, Prop. 5.3 also yields 0 Confl♥′,♥′(G,G) from 0 Confl♥,♥(A,A) and
Impl♥,♥′(A,A) in case we have nt(♥′) and the premiss needs to be present – in
that case we also have nt(♥) and the corresponding premiss is in (1) as well.

The cases involving ♥♠(C/D)
L and Mon♥,♥′ or ♥♠(C/D)

R and D♥,♥′ are similar.

For the case of a multicut between ♥♠(C/D)
R and both principal formulae of

the D rule, we claim that this cannot happen. For suppose we had (1) and

Confl♥,♥(A,A) B ⇒ B B ⇒ B

Σ,♥(A,B),♥(A/B)⇒ Π
D♥,♥
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If nt(♥) we immediately obtain a contradiction since Confl♥,♥(A,A) is both
derivable and not derivable. Otherwise, since D♥,♥ is in the system, we have

♥ ♥, and since the rule ♥♠(C/D)
R was used, we have ♠ → ♥. Hence we also

have ♠ ♠. Thus one instance of ♣(E/F ) in the set of premisses of ♥♠(C/D)
R

is the assumption ♠(C/D). But for this formula the first premiss gives us
B ⇒ D, hence in the choice block the instantiation 0 B ⇒ D of the first
underivability statement 0 B ⇒ F does not hold. Further, from Prop. 5.3 with
the premisses Impl♠,♥(C,A) and Confl♥,♥(A,A) we get Confl♠,♥(C,A), hence
this instantiation of the second underivability statement 0 Confl♣,♥(E,A) of
the choice block also does not hold. Finally, the instantiation 0 D ⇒ D of the
third underivability statement 0 F ⇒ D also does not hold due to Lem. 5.4,
and hence the proto-derivation ending in (1) cannot have been a derivation.

The case involving ♥♠(C/D)
R and P♥ is completely analogous.

Also in the case of the assumption right rule versus the assumption left rule
we claim that this cannot happen. Suppose we would have (1) and

B ⇒ D′

Confl♠′,♥(C ′, A)


0 B ⇒ F ′

0 Impl♣′,♥(E′, A)
{0 F ′ ⇒ D′}

∪

B ⇒ Y ′,
Y ′ ⇒ F ′,
Confl♦′,♥(X ′, A)

 :
♦′(X ′/Y ′) ∈ L,

♦′ ♣′
♣′(E′/F ′) � ♦′(X ′/Y ′)



 :
♣′(E′/F ′) ∈ L,
♣′ ♠′

♠′(C ′/D′) � ♣′(E′/F ′)


Γ,♥(A/B)⇒ ∆

♥♠
′(C′/D′)

L

Since both rules are in the system, we have ♠ → ♥ and ♠′ ♥, and hence
also ♠′ ♠. Further, since the superiority relation is acyclic, we have ei-
ther ♠(C/D) � ♠′(C ′/D′) or ♠′(C ′/D′) � ♠(C/D). Suppose ♠(C/D) �
♠′(C ′/D′). Then instantiating ♣(E/F ) in the premisses of ♥♠(C/D)

R with
♠′(C ′/D′) we have either 0 B ⇒ D′, or 0 Confl♠′,♥(C ′, A) or 0 D′ ⇒ D
together with the choice. The first of these cannot be the case, because from

♥♠
′(C′/D′)

L we have B ⇒ D′. The second also cannot be the case because again

from ♥♠
′(C′/D′)

L we get Confl♠′,♥(C ′, A). So assume that 0 D′ ⇒ D and for
some ♦(X/Y ) ∈ L with ♦ ♠′ and ♠′(C ′/D′) � ♦(X/Y ) we have all three of

B ⇒ Y Y ⇒ D′ Impl♦,♥(X,A) (2)

But then instantiating this assumption ♦(X/Y ) for ♣′(E′/F ′) in the premisses

of ♥♠
′(C′/D′)

L yields that one of 0 B ⇒ Y or 0 Impl♦,♥(X,A) or 0 Y ⇒ D′

holds. This is clearly in contradiction to (2). Hence every possibility yields a
contradiction, and thus one of the two proto-derivations was not a derivation.
The case of ♠′(C ′/D′) � ♠(C/D) is analogous, starting with instantiating the

formula ♣′(E′/F ′) in the premisses of the rule ♥♠
′(C′/D′)

L with the assumption
♠(C/D) and then reasoning as in the first case. 2

An important corollary of this result is that we can reduce derivability to
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derivability of bounded rank, and hence obtain well-definedness of the former
notion:

Theorem 5.6 (Derivability is well-defined) Let the maximal nesting
depth of operators in Γ⇒ ∆ be n. Then we have `GNcut Γ⇒ ∆ iff `GN

Γ⇒ ∆
iff `nGN

Γ⇒ ∆. Hence derivability in GN is well-defined.

Proof. The first equivalence follows straightforwardly from cut elimination
(Thm. 5.5). The proof for the second equivalence is by induction on n. For
n = 0 the sequent is purely propositional. Hence the derivation cannot contain
underivability statements, and the statement is straightforward. Suppose the
statement holds for all m < n. Due to the shape of the rules, every sequent in a
derivation of Γ⇒ ∆ has nesting depth ≤ n, and the underivability statements
mention sequents of depth ≤ n − 1. Thus by induction hypothesis on the
underivability statements the derivation is of rank n and we have `nGN

Γ⇒ ∆.
Similarly, if `nGN

Γ ⇒ ∆, then by induction hypothesis on the underivability
statements occurring in the derivation we obtain `GN

Γ⇒ ∆. 2

As a further corollary we obtain decidability of the system and complexity
results. Notably, the complexity of reasoning from assumptions is the same as
that of reasoning without assumptions in Standard Deontic Logic [18]:

Theorem 5.7 Given N, the problem of deciding whether `GN
Γ ⇒ ∆ is de-

cidable in space polynomial in the size of Γ⇒ ∆.

Proof. (Sketch) The idea is to perform backwards proof search to find a proto
derivation. For each underivability statement we then recursively call the al-
gorithm and flip the answer. To prevent loops caused by contraction, we copy
the principal formula of the implication rules into the premisses and omit the
weakening and contraction rules. Standard inductions on the depth of the proto
derivation then show admissibility of the contraction and weakening rules. The
proof search procedure existentially guesses the last applied rule, checks that
its application is non-redundant, i.e., introduces at least one new formula, then
universally chooses its premisses and checks derivability. Since each backwards
application of a rule adds at least one new subformula of the conclusion or
reduces the maximal nesting depth of the sequent, the depth of the search
tree is polynomial in the size of the conclusion. Since moreover its branching
factor only depends on the number of rules, i.e., deontic assumptions, it is in-
dependent of the size of the input. Hence the procedure runs in alternating
polynomial time, which is equivalent to polynomial space [5]. 2

6 Applications

We apply our methodology to the case studies of Mı̄mām. sā-inspired logic,
permissions as exception, and a logic of sanction and violation, showing how
contrary-to-duties can be modeled as instance of defeasible reasoning [26].

6.1 Mı̄mām. sā-inspired logic

The specificity rules in [8] for the Mı̄mām. sā-inspired logic are a particular case
of our general rule schemas. Before showing how to model these rules, and
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how to extend them with prioritized obligations, we briefly recall the logic in
question, introduced to formalize and provide a better understanding of the
deontic reasoning of Mı̄mām. sā authors. Mı̄mām. sā is an ancient influential
school of Indian philosophy mainly focusing on the exegesis of the prescriptive
portions of the Vedas – the Sacred Texts of Hinduism. In order to explain
the deontic content of the Vedas and interpret them in a noncontradictory
way, Mı̄mām. sā authors proposed a rich body of deontic, hermeneutical and
linguistic principles called nyāyas. In [7] some of the deontic nyāyas were
transformed into Hilbert axioms for a non-normal dyadic deontic logic, which
yielded a formal analysis of a famous deontic controversy contained in the
Vedas. Interestingly, this solution coincided with that of Prabhākara, one of
the chief Mı̄mām. sā authors, which previous approaches failed to make sense of.
As shown in [9] the 2-free fragment of this logic is the dyadic version of the
non-normal deontic logic MD [6].

Not all nyāyas can be converted into Hilbert axioms. These include more
general interpretative principles to resolve apparent contradictions in the Vedas
like the specificity principle, discussed already by Mı̄mām. sā author Śabara
(3rd-5th c. CE) under the name gun. apradhāna. Hence the dyadic version of
MD was extended in [8] with sequent rules for specificity. These rules can be
seen as a particular case of the general scheme described here by considering an
operator characterisation with only one obligation type operator O with O O
and no superiority relation. Going beyond [8], the superiority relation in the
rules of Fig. 3 lets us deal with the Mı̄mām. sā interpretative principle called
hierarchy of sources (śrutismr.tyādibādha). This principle states that out of two
apparently clashing commands, the one issued by a less authoritative source is
to be suspended. Indeed, Mı̄mām. sā author Kumārila describes four sources of
duty, in decreasing order of authority: śruti (the Vedas), smr.ti (the ‘recollected
texts’, based on the Vedas), sadācāra (the behaviour of good people, who are
learned in the Vedas) and ātmatus.t. i (the inner feeling of approval by people
who are learned in the Vedas). Hence, the considered norms can be formalized
by four obligation type operators OV,Ort, Ogp,Oif with ♥ ♠ for each ♥,♠ ∈
{OV,Ort,Ogp,Oif}, with the transitive closure of the priorities OV(A/B) �
Ort(C/D), Ort(C/D) � Ogp(E/F ) and Ogp(E/F ) � Oif(G/H) between any
assumptions using these operators.

6.2 Permissions as exceptions

Considered often as the dual of obligation, permission has been treated as
primitive operator as well [22,11]. Here we model the notion of permissions as
exceptions to other deontic operators (compare [2] for an analogous treatment
in the context of input-output logics). Intuitively, a permission P♥(A/B) acts
as an exception to deontic assumptions in ♥, in that it blocks the derivation of a
formula ♥(C/D) whenever A and C are in conflict. To define what “in conflict”
means, we assume that what is permitted is not forbidden, i.e., that given
P♥(A/B) we have not ♥(A/B) if ♥ is of prohibition type and not ♥(¬A/B) for
♥ of obligation type. This suggests that permission operators are of obligation
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type, i.e., upwards monotone in the first argument, in line with the standard
notion that if something is permitted, everything which follows from this is
also permitted. Thus, to model permissions for an operator ♥, we add an
obligation type operator P♥ with ♥ P♥. Note that ♥ could be of obligation
or prohibition type, and it can but does not need to satisfy ♥ ♥ and nt(♥).

Example 6.1 To model the sentence “Parking is forbidden, unless one has
a permit” we use a prohibition-type operator F with F F and the corre-
sponding (obligation type) permission operator PF with F PF . The deon-
tic assumptions are {F(parking/>), PF (parking/permit)}. We can then de-
rive, e.g., F(parking/>) and F(parking/lazy), but neither F(parking/permit)
nor F(parking/permit∧ lazy). Hence the permission PF (parking/permit) acts as
an explicit exception to the more general prohibition F(parking/>).

Note that adding permission operators also makes permission formulae
derivable, e.g., PF (parking/permit ∧ lazy) in Ex. 6.1. These could be read as
“explicit” or “strong” permissions in that they are derived from permissions ex-
plicitly mentioned in the assumptions. To keep them implicit, we can consider
permissions in the assumptions, but not as derived formulae. Note also that
to introduce a more general permission operator P which acts as exception to
several other operators ♥1, . . . ,♥n, it is enough to add ♥i P for every i ≤ n.

6.3 Sanctions and violations

We can also use our approach to differentiate between exceptions to a primary
norm (as above), and secondary norms, which come into effect after a primary
one has been violated. The crucial difference is that for exceptions to a more
general norm there is no violation, whereas for secondary norms the primary
one stays in force, and hence can be violated. This is similar to the distinction
between violations of norms and sanctions as a result of violations. We model
this using two prohibition type operators S and V with corresponding permis-
sion operators PS and PV as in Sec. 6.2. The intuitive reading of S(A/B) is
that A is forbidden given B, and doing A results in a sanction. For V(A/B)
we read that A is forbidden given B, and doing A results in a violation but
not necessarily a sanction. Here we assume that there is no sanction without
violation, S → V, and that V V, V PV , S PS . Closure under → then yields
S V, S S, S PV . The latter means that exceptions to violations can over-
rule sanctions, but in absence of V PS exceptions to sanctions cannot overrule
violations. Hence there might be a violation, even though there is no sanction.

Example 6.2 Consider the assumptions {S(parking/>), V(parking/>),
PV(parking/permit), PS(parking/fine paid)}, modelling the fact that once a fine
for illegal parking has been paid, there is no further sanction. We derive all
three of S(parking/>), V(parking/>), V(parking/fine paid). However, we can-
not derive either of S(parking/fine paid), S(parking/permit), V(parking/permit).
The first of these is overruled by PS(fine paid), the second and third ones by
PV(parking/permit). So if there is no permit, but the fine has been paid, there
is no further sanction but still a violation of the prohibition to park.
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Remark 6.3 Similarly, we can model contrary-to-duty (CTD) obligations
while maintaining the distinction between defeasibility and violation of primary
obligations. Indeed, borrowing the example from [26], we can model “There
must be no fence”, as S(fence/>)∧V(fence/>), and “If there is a fence, it must
be a white fence” as PS(white fence/fence). Then we derive that the primary
obligation is in force (S(fence/>) ∧ V(fence/>)) and having a white fence re-
sults in a violation of the primary norm (V(white fence/fence)), but does not
violate the secondary norm (0 S(white fence/fence)). This distinction between
violations of primary and secondary norms is somewhat similar to the distinc-
tion between instrumental/actual and proper/ideal obligations in [28] and [4]
respectively: Roughly speaking, proper or ideal obligations, i.e., all obligations
that apply to a context, including violated primary ones, correspond to the
violation operator, while instrumental or actual ones, i.e., those detailing what
to do in a particular situation, correspond to the sanction operator.

In general, CTDs of other CTDs are modeled by as many different operators
as nested CTDs +1. A similar approach is in [13], that employs the (n-ary)
substructural connective ⊗ where A⊗B stands for “the violation of A can be
repaired by B” to reduce CTD to a special kind of normative exception.

7 Conclusions and Related Work

We introduced sequent rules for reasoning with deontic assumptions using speci-
ficity in presence of prioritized deontic operators. The method, which relies on
cut elimination in presence of underivability premisses, captures systems with
an arbitrary finite number of dyadic deontic operators based on M possibly ex-
tended with axioms P or D and inclusions among the operators. The method
is applied to various case studes and implemented in deonticProver2.0.

Related work. The approaches closest to ours are those in the framework
of dyadic deontic logic, e.g., [33,6,32,20,26]. The main difference is that we
consider reasoning from deontic assumptions to be inherently nonmonotonic,
and hence do not attempt to capture it purely axiomatically. Indeed, while
from the assumption O(A/>) we derive O(A/>), this no longer holds if we
add the conflicting assumption O(¬A/>). This aspect cannot be captured in
a purely axiomatic setting, since propositional logic already gives O(A/>) ∧
O(¬A/>) → O(A/>). Additionally, unlike our system, most dyadic deontic
logics derive O(A/A), which rules out, e.g., the derivation of a formula like
O(¬asparagus/asparagus) in Ex. 4.2.

In the nonmonotonic setting, different methods have been introduced to deal
with conflicts using specificity and/or superiority; these are either logic-tailored,
e.g. [29,27], or are handled within general frameworks like the following.

Deontic default logic [15,16] uses semantical extensions to provide a cred-
ulous or skeptical approach (an obligation is derivable if it belongs to at least
one or all extensions, respectively). While our system is heavily influenced by
the notions of specificity and overriding in [15,16], it avoids the fixpoint con-
struction necessary there, accounts for explicit exceptions, and permits nested
obligations on the logic level.

http://subsell.logic.at/bprover/deonticProver/version2.0/
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Defeasible deontic logic (DDL), introduced in [12], uses facts, strict and
defeasible rules, undercutting rules, and a binary superiority relation on the
rules to solve conflicts between defeasible rules. The main differences with our
approach are that in DDL propositional reasoning is defeasible, tractable com-
plexity is paid for by the omission of binary connectives, specificity is handled
“manually” by adding the superiority relation to all rules where it should apply.

A very influential logic expressing conditional norms is Input-Output
Logic [21,23,24]. The main difference w.r.t. our approach is that their base
logic is based fundamentally on (deontic or factual) detachment principles. Per-
haps more in line with the notion of contextual obligations [26], neither of these
holds in our system, nor, e.g., in the Mı̄mām. sā-inspired logic (see Section 6.1).

Limitations and future work. An obvious limitation of our proposal is
that the underlying non-normal deontic logics are rather weak. In particu-
lar, it would be interesting to extend the logic with an aggregation principle
♥(A/C)∧♥(B/C)→ ♥(A∧B/C). We anticipate that this is possible by suit-
ably adjusting the assumption rules, albeit at a severe cost to the complexity.
The more interesting question is how to extend the assumption rules to addi-
tional axioms in a general way. We’d also like to solve the limitation mentioned
in [16] and rule out conflicts between more than two deontic assumptions, i.e.,
to incorporate the rules ` ¬(A1∧ · · ·∧An/B)/ ` ¬(♥(A1/B)∧ · · ·∧♥(An/B))
in the base logic. This should be possible using methods similar to those
for aggregation. A perhaps more challenging extension would be to incorpo-
rate principles like deontic detachment / transitivity. It is not entirely clear
whether it is possible to avoid a fixpoint construction in this case. Finally, while
neighbourhood semantics for the base logics as in [6] are reasonably straight-
forward, the big challenge is to find a suitable semantic characterisation for the
assumption rules. These topics are left for future work.
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